AH Chemistry – Unit 1

Reaction Feasibility

THERMOCHEMISTRY

The study of changes in ENERGY which occur during chemical reactions

First Law Of Thermodynamics

The *Total Energy* of the Universe (System and Surroundings) *is constant*

Energy can neither be created nor destroyed

Energy *can be converted* from one Form to another while the Total Energy remains the same

Energy Pathway Diagrams

Enthalpy ~ Exothermic

$$\Delta H = H - H$$
final - initial

Enthalpy ~ Endothermic

 $\Delta H = H$

hna

Actual Enthalpy values, H, *cannot be measured*.

Heat absorbed from the surroundings

Surroundings

Changes in Enthalpy, ΔH , *can be measured*.

Standard Enthalpies

reactants and products are in their standard states

measured at a *specific temperature*, usually 298K

measured at a pressure of *one atmosphere*, 10^5 Nm^{-2}

concentrations of solutions are *one mol l*⁻¹

designated using superscript $^{\circ}$, ΔH°

Enthalpy of Formation

is the *heat change* when *1 mole* of a *compound* is *formed from its elements* under *standard conditions*

Standard Enthalpies of Formation

Named Enthalpies

Named Enthalpies

Transition	Process	Symbol*
Transition	Phase $\alpha \rightarrow$ phase β	$\Delta_{\rm trs} H$
Fusion	$s \rightarrow l$	$\Delta_{\rm fus} H$
Vaporization	$l \rightarrow g$	$\Delta_{\rm vap} H$
Sublimation	$s \rightarrow g$	$\Delta_{ m sub}H$
Mixing	$Pure \rightarrow mixture$	$\Delta_{mix}H$
Solution	Solute \rightarrow solution	$\Delta_{\rm sol}H$
Hydration	$X^{\pm}(g) \to X^{\pm}(aq)$	$\Delta_{\rm hyd}H$
Atomization	$Species(s, l, g) \rightarrow atoms(g)$	$\Delta_{\rm at} H$
Ionization	$X(g) \longrightarrow X^+(g) + e^-(g)$	$\Delta_{ion}H$
Electron gain	$X(g) + e^-(g) \longrightarrow X^-(g)$	$\Delta_{ m eg} H$
Reaction	Reactants \rightarrow products	$\Delta_{\rm r} H$
Combustion	$Compounds(s, l, g) + O_2(g) \rightarrow CO_2(g), H_2O(l, g)$	$\Delta_{c}H$
Formation	Elements → compound	$\Delta_{\rm f} H$
Activation	Reactants \rightarrow activated complex	$\Delta^{\ddagger}H$

Using Enthalpies of Formation

The *Enthalpy of Combustion* of methane can be *calculated* using *Enthalpies of Formation*

Step1: Reactants to Elements

Step2 : Elements to Products

 $\Delta \mathbf{H}_{step 2} = (\Delta \mathbf{H}^{\circ}_{f \text{ CO2}} + 2 \times \Delta \mathbf{H}^{\circ}_{f \text{ water}}) = \boldsymbol{\Sigma} \Delta \mathbf{H}^{\circ}_{f \text{ products}}$

General Expression

reaction

reactants

Formulae

Energy Rules!

Some Processes involve **no change in temperature** but a major change in the energy of particles is still occurring.

These changes in the energy of particles have an overall affect on the **level** of disorder shown by a substance.

The disorder in a substance is known as its **ENTROPY, S**.

The Third Law of Thermodynamics provides a reference against which Entropies can be measured.

"the Entropy of a perfect crystal at 0 K is zero"

Entropy - State

	Molecular Motion			
9999	Translation	Rotation	Vibration	
Kinetic Energy - Solid	no freedom no freedom to rotate		free to vibrate	
Kinetic Energy - Liquid	restricted freedom to move	some freedom to rotate	free to vibrate	
Kinetic Energy - Gas	total freedom to move	total freedom to rotate	free to vibrate	

Entropy - Temperature

Entropy - Dissolving

 $NaCl(s) + H_2O(l)$

Less Randomness

Less Entropy

 $Na^+(aq) + Cl^-(aq)$

More Randomness

More Entropy

Entropy - Molecules

Entropy - Numbers

Less Randomness

More Randomness

Less Entropy

More Entropy

Entropy - Mixtures

Less Randomness

Less Entropy

More Randomness

More Entropy

Entropy Values

Standard Molar Entropies for Some Common Substances at 25°C					
Substance	Formula	S° [J/(K · mol)]	Substance	Formula	S° [J/(K · mol)]
Gases			Liquids		
Acetylene	C_2H_2	200.8	Acetic acid	CH ₃ CO ₂ H	160
Ammonia	NH ₃	192.3	Ethanol	CH ₃ CH ₂ OH	161
Carbon dioxide	CO ₂	213.6	Methanol	CH ₃ OH	127
Carbon monoxide	СО	197.6	Water	H_2O	69.9
Ethylene	C_2H_4	219.5	Solids		
Hydrogen	H_2	130.6	Calcium carbonate	CaCO ₃	92.9
Methane	CH_4	186.2	Calcium oxide	CaO	39.7
Nitrogen	N_2	191.5	Diamond	С	2.4
Nitrogen dioxide	NO ₂	240.0	Graphite	С	5.7
Dinitrogen tetroxide	N_2O_4	304.2	Iron	Fe	27.3
Oxygen	O ₂	205.0	Iron(III) oxide	Fe ₂ O ₃	87.4

Entropy Calculations

Similar to a previous formula:

$$\Delta S^{o} = \sum S^{o}_{\text{products}} - \sum S^{o}_{\text{reactants}}$$

Entropy Changes, ΔS

• spontaneous endothermic reactions tend to have certain characteristics in common

 $(NH_4)_2CO_3 + 2CH_3COOH \implies 2NH_4CH_3COO + CO_2 + H_2O$

- the number of moles of product are greater than the number of moles of reactant
- a large proportion of the products are either liquids or gases
- reactants are often solids or liquids

The trend solids \implies liquids \implies gases is associated with an increase in disorder.

Is an **Increase In Entropy** the driving force behind a spontaneous chemical reaction ?

Both $\Delta S = +ve$ & $\Delta S = -ve$ processes can be spontaneous The direction of a spontaneous process will depend on temperature A spontaneous process will depend on both ΔS and ΔH

The 'problem' can be resolved if we take into account changes taking place in the **Surroundings**.

The driving force behind a spontaneous process turns out to be an **Overall Increase In Entropy**

Water freezing leads to a decrease in entropy within the system.

Being Exothermic, however, leads to an increase in entropy in the surroundings

Water freezing is a spontaneous process whenever there is an **Overall Increase In Entropy**

Being Endothermic leads to a decrease in entropy in the surroundings

There will have to be an increase in entropy within the system.

Water melting is a spontaneous process whenever there is an **Overall Increase In Entropy**

Measuring ΔS^{o}_{surr}

Trying to Calculate the effect on the surroundings would appear, at first, an impossible task.

Where do the surroundings start & finish?

What is the entropy of air? Glass? etc.

How many moles of 'surroundings' are there?

Fortunately it is much, much simpler than that.

Measuring ΔS^{o}_{surr}

Firstly the change in Entropy of the Surroundings is caused by the Enthalpy change of the Surroundings, and.....

$$\Delta H^{o}_{surr} = -\Delta H^{o}_{syst}$$

Temperature has an inverse effect. For example, energy released into the surroundings has less effect on the entropy of the surroundings, the hotter the surroundings are.

Measuring ΔS^{o}_{surr}

In fact, it turns out that ..

$$\Delta S^{o}_{surr} = -\frac{\Delta H^{o}_{syst}}{T}$$

It is the **Overall Entropy Change** that must be considered.

$$\Delta S^{o}_{total} = \Delta S^{o}_{syst} + \Delta S^{o}_{surr}$$
$$\Delta S^{o}_{total} = \Delta S^{o}_{surr} - \frac{\Delta H^{o}_{syst}}{T}$$

Measuring ΔS^{o}_{total}

We are interested in the point at which the **Total Entropy** becomes a positive value (ceases being a negative value). We can 'solve' for

 $\Delta S_{total} = 0$

Multiplying throughout by **T** gives us

Measuring ΔS^{o}_{total}

Remember that this is really the formula for ΔS_{total}

$\Delta S^{o}_{total} = T\Delta S^{o}_{syst} - \Delta H^{o}_{syst}$

Armed with ΔS_AH and values for **T** we can calculate the overall change in Entropy and a positive value would be necessary for a spontaneous reaction.

However, for reasons that are beyond this Topic, a term called the **Gibbs Free Energy, G**, is preferred. A negative value for ΔG is equivalent to a positive value for ΔS . This requires a slight adjustment in our final formula.

Gibbs Free Energy ΔG° $\Delta G^{\circ} = \Delta H^{\circ}_{syst} - T\Delta S^{\circ}_{syst}$

The convenient thing about this expression is that it allows us to do calculations using only values that can be directly measured or easily calculated.

Strictly speaking, the **Second Law of Thermodynamics** states that **Entropy must increase** for a Spontaneous Process.

In practice, the **Second Law of Thermodynamics** means that **Gibbs Free Energy must decrease** for a Spontaneous Process.

Gibbs Free Energy ΔG^o

Signs of Enthalpy, Entropy, and Free-Energy Changes and Reaction Spontane at Constant Temperature and Pressure

ΔH	ΔS	$\Delta \boldsymbol{G} = \Delta \boldsymbol{H} - \boldsymbol{T} \Delta \boldsymbol{S}$	Reaction Spontaneity
_	+	_	Spontaneous at all temperatures
_	_	– or +	Spontaneous at low temperatures where ΔH outweighs $T\Delta S$
			Nonspontaneous at high temperatures where $T\Delta S$ outweighs ΔH
+	_	+	Nonspontaneous at all temperatures
+	+	- or +	Spontaneous at high temperatures where $T\Delta S$ outweighs ΔH
			Nonspontaneous at low temperatures where ΔH outweighs $T\Delta S$

Calculating ΔG° $Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$

	$Fe_2O_3(s)$	CO(g)	Fe(s)	$CO_2(g)$
$\Delta H^{\circ}_{f} (kJ/mol)$	-824.2	-110.5	0	-393.5
S° [J/(K•mol)]	87.4	197.6	27.3	213.6

 $\Delta H^{o} = \sum \Delta H_{f}^{o}_{products} - \sum \Delta H_{f}^{o}_{reactants}$ $\Delta S^{o} = \sum S^{o}_{products} - \sum S^{o}_{reactants}$ $T \text{ in Kelvin} \qquad \Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$

ΔG^{o} of Formation

$\Delta G^{o} = \sum \Delta G_{f}^{o}_{products} - \sum \Delta G_{f}^{o}_{reactants}$

Standard Free Energies of Formation for Some Common Substances at 25°C					
Substance	Formula	ΔG°_{f} (kJ/mol)	Substance	Formula	ΔG°_{f} (kJ/mol)
Gases			Liquids		
Acetylene	C_2H_2	209.2	Acetic acid	CH ₃ CO ₂ H	-390
Ammonia	NH ₃	-16.5	Ethanol	C_2H_5OH	-174.9
Carbon dioxide	CO ₂	-394.4	Methanol	CH ₃ OH	-166.4
Carbon monoxide	СО	-137.2	Water	H_2O	-237.2
Ethylene	C_2H_4	68.1	Solids		
Hydrogen	H_2	0	Calcium carbonate	CaCO ₃	-1128.8
Methane	CH_4	-50.8	Calcium oxide	CaO	-604.0
Nitrogen	N_2	0	Diamond	С	2.9
Nitrogen dioxide	NO_2	51.3	Graphite	С	0
Dinitrogen tetroxide	N_2O_4	97.8	Iron(III) oxide	Fe ₂ O ₃	-742.2

The ΔG of a reaction can be calculated from ΔG_{f} values.

By themselves, they give useful information about relative stabilities.

Ellingham Diagrams $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ y = c + mx

Reversible Reactions

For a Chemical Reaction

$\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$

If ΔG is negative for one direction, it must be positive for the reverse.

This implies that only one reaction can proceed (spontaneously) under a given set of conditions.

However, ΔS calculations are based on 100% Reactant & 100% Product.

In reality, mixtures exist, so larger ΔS values will be obtained than those calculated.

Reversible Reactions

Equilibrium

∆G for 100% Reac → 100% Prod is **positive** but 100% Reac → mixture is **negative** so forward reaction can take place.

∆G for 100% Prod → 100% Reac and 100% Prod → mixture is more negative so backward reaction is **favoured**

Equilibrium lies over to the left but only slightly since value of ΔG is positive but relatively small

∆G for 100% Reac → 100% Prod is **very positive** but 100% Reac → mixture is still **slightly negative** so forward reaction can take place.

∆G for 100% Prod → 100% Reac and 100% Prod → mixture is more negative so backward reaction is **favoured**

Equilibrium lies well over to the left since value of ΔG is positive and relatively large

 ΔG for 100% Reac \rightarrow 100% Prod is very negative but 100% Prod \rightarrow mixture is still slightly negative so backward reaction can take place.

∆G for 100% Reac → 100% Prod and 100% Reac → mixture is more negative so forward reaction is **favoured**

Equilibrium lies well over to the right since value of ΔG is negative and relatively large

Free Energy and the Extent of Reaction

There is a mathematical relationship:

$\Delta G^{o} = -RT \ln K$

More simply:

	Relationship Between the Standard Free-Energy Change and the Equilibrium Constant for a Reaction: $\Delta G^{\circ} = -RT \ln K$		
$\Delta oldsymbol{G}^{\circ}$	ln K	K	Comment
$\Delta G^{\circ} < 0$	$\ln K > 0$	K > 1	The equilibrium mixture is mainly products.
$\Delta G^{\circ} > 0$	$\ln K < 0$	K < 1	The equilibrium mixture is mainly reactants.
$\Delta G^{\circ} = 0$	$\ln K = 0$	K = 1	The equilibrium mixture contains comparable amounts of reactants and products ($K = 1$ for 1 M concentrations and 1 atm partial pressures).

Thermodynamic Limits

Thermodynamics can predict whether a reaction is feasible or not.

Thermodynamics can predict the conditions necessary for a reaction to be feasible.

Thermodynamics can predict the position of equilibrium

Thermodynamics **cannot** predict **how fast** a reaction might be.